Tratamento:
NÃO são necessários antibióticos para a bronquite aguda causada por um vírus. A infecção costuma desaparecer sozinha depois de 1 semana. Siga os seguintes passos para ter algum alívio:
Para qualquer tipo de bronquite, o passo mais importante a ser tomado é PARAR de fumar. Se a bronquite for diagnosticada cedo o suficiente, é possível evitar danos aos pulmões. Prevenção:
|
VOLTADO PARA TROCA DE INFORMAÇÕES SOBRE FISIOTERAPIA INTENSIVA E CARDIORRESPIRATÓRIA
quinta-feira, 31 de maio de 2012
Tratamento e prevenção da Bronquite para leigos.
quarta-feira, 30 de maio de 2012
VENTILAÇÃO POR PRESSÃO NEGATIVA EM PEDIATRIA
http://www.pediatriconcall.com/fordoctor/diseasesandcondition/PEDIATRIC_EMERGENCIES/mechanical_ventilation.asp
Ventilação de alta frequência
1. Ventilação
de alta frequência - VAF: IGH-frequência de ventilação (VAF) tem sido um dos mais estudados técnicas de ventilação ,
para além de ventilação com pressão positiva, ao longo das duas últimas
décadas. Apesar dos seus benefícios teóricos que não recebeu consenso unânime e
não tem sido amplamente utilizada. A diferença mais fundamental entre a ventilação
de alta freqüência (VAF) e ventilação com pressão positiva intermitente (IPPV)
é que, com VAF o volume corrente (Vt) necessário é de aproximadamente 1 peso
corporal -3 ml / kg, em comparação com 6-10 ml / kg com ventilação de pressão
positiva intermitente (IPPV). O aumento da taxa de ventilação para freqüências de 60 bpm ou mais no
VAF é obviamente obrigatório se a ventilação volume mesmo comparável minuto é a
resultar. Três modelos estão atualmente sob investigação: ventilação de alta
freqüência com pressão positiva (HFPPV), ventilação de alta freqüência a jato (
VJAF) e ventilação de alta freqüência oscilatória (VAFO). Os
dois primeiros não são mais utilizados em terapia intensiva devido a seus
pobres resultados das experimentações em relação à ventilação mecânica
convencional. VJAF encontrou um lugar importante na traqueo-brônquica cirurgia. VAFO
está provando um grande sucesso, principalmente porque o equipamento adequado
capaz de resolver o problema da umidificação dos gases ventilados já está
disponível.
1,1 Ventilação de alta frequência oscilatória (VAFO): O
volume corrente é entregue através de tamanho normal tubos traqueais e tanto
inspiração e expiração são ativas e de poder aproximadamente igual, tal como
ocorreria com um pistão oscilante ou ventilador orador baseado alto. Frequências
variar de 2 Hz a mais de 100 Hz (6000 cpm). O ventilador é geralmente uma bomba de vaivém da
variedade de pistão ou um sistema de altifalantes accionado por um oscilador
electrónico. Há um número de mecanismos propostos para explicar a troca gasosa na
VOAF. Ventilação alveolar direta, perfis de velocidade assimétricas, dispersão
de Taylor, pendeluft, cardiogênico, difusão acelerada e mistura de ressonância
acústica parecem participar das trocas gasosas, tanto individualmente e / ou em
conjunto.
Vantagens teóricas:
manter as vias aéreas
abertas
menor volume fásica e
mudança de pressão
troca de gás a
pressões significativamente mais baixos das vias aéreas
menos envolvimento do
sistema cardiovascular
VAFO é recomendado
para reduzir o barotrauma pulmonar e lesão pulmonar conseqüente não-homogênea
patologia pulmonar, vazamentos de ar, Pulmonar Persistente Hipertensão do recém-nascido (HPP) e ventilação de bebês
prematuros.
Contra-indicações:
obstrução pulmonar de aspiração de mecônio fresco
obstrução pulmonar de aspiração de mecônio fresco
displasia
broncopulmonar
hemorragia
intracraniana.
Complicações:
hiperinsuflação
pulmonar em doenças pulmonares obstrutivas
hemorragias
intracranianas - Redução da freqüência cardíaca atribuída ao aumento da
atividade vagal
displasia
broncopulmonar devido a ventilação pulmonar não homogéneo (Figura 7)
necrotizante
traqueobronquite, aumento da permeabilidade do epitélio do pulmão e
humidificação insuficiente de traqueo-brônquicas secreções.
FONTE:
terça-feira, 29 de maio de 2012
FALECIMENTO DO GRANDE FISIOTERAPEUTA RUY GALLART DE MENEZES
É COM MUITA TRISTEZA QUE INFORMO O FALECIMENTO DO DR. RUY GALLART DE MENEZES.
O ENTERRO SERÁ HOJE ÁS 16:00 HS., NO CEMITÉRIO DO CAJU, CAPELA I NO RIO DE JANEIRO.
FOI PRESIDENTE DO COFFITO E CRIADOR DE TODA A NOSSA REGULAMENTAÇÃO.
QUE DEUS ABENÇOE SUA FAMÍLIA E CONSOLE SEUS CORAÇÕES.
VAI FAZER FALTA MUITA FALTA PARA NOSSA PROFISSÃO, UM PROFISSIONAL SINCERO, LÚCIDO E DE MUITO BOM SENSO.
Dignidade, Ousadia, Ética, Determinação, Respeito, Conhecimento e AMOR, MUITO AMOR pela FISIOTERAPIA BRASILEIRA SÃO PALAVRAS DITAS POR TODOS OS PROFISSIONAIS QUE O CONHECIAM DE PERTO E DE LONGE.
segunda-feira, 28 de maio de 2012
Princípios da Ventilação mecânica
Princípios da ventilação mecânica
Carlos Roberto Ribeiro de Carvalho; Carlos Toufen Junior; Suelene Aires Franca
Definição
A ventilação mecânica (VM) ou, como seria mais adequado chamarmos, o suporte ventilatório, consiste em um método de suporte para o tratamento de pacientes com insuficiência respiratória aguda ou crônica agudizada.
Objetivos
Tem por objetivos, além da manutenção das trocas gasosas, ou seja, correção da hipoxemia e da acidose respiratória associada à hipercapnia: aliviar o trabalho da musculatura respiratória que, em situações agudas de alta demanda metabólica, está elevado; reverter ou evitar a fadiga da musculatura respiratória; diminuir o consumo de oxigênio, dessa forma reduzindo o desconforto respiratório; e permitir a aplicação de terapêuticas específicas.
Classificação
Atualmente, classifica-se o suporte ventilatório em dois grandes grupos:
• Ventilação mecânica invasiva; e
• Ventilação não invasiva.
Nas duas situações, a ventilação artificial é conseguida com a aplicação de pressão positiva nas vias aéreas. A diferença entre elas fica na forma de liberação de pressão: enquanto na ventilação invasiva utiliza-se uma prótese introduzida na via aérea, isto é, um tubo oro ou nasotraqueal (menos comum) ou uma cânula de traqueostomia, na ventilação não invasiva, utiliza-se uma máscara como interface entre o paciente e o ventilador artificial.
Princípios
A ventilação mecânica (VM) se faz através da utilização de aparelhos que, intermitentemente, insuflam as vias respiratórias com volumes de ar (volume corrente - VT). O movimento do gás para dentro dos pulmões ocorre devido à geração de um gradiente de pressão entre as vias aéreas superiores e o alvéolo, podendo ser conseguido por um equipamento que diminua a pressão alveolar (ventilação por pressão negativa) ou que aumente a pressão da via aérea proximal (ventilação por pressão positiva). Devido à sua maior aplicação na prática clínica, vão ser comentados somente os aspectos relacionados à ventilação com pressão positiva, tanto na forma invasiva como na não invasiva. Neste ar, controla-se a concentração de O2 (FIO2) necessária para obter-se uma taxa arterial de oxigênio (pressão parcial de oxigênio no sangue arterial- PaO2) adequada. Controla-se ainda, a velocidade com que o ar será administrado (fluxo inspiratório - ) e também se define a forma da onda de fluxo, por exemplo, na ventilação com volume controlado: "descendente", "quadrada" (mantém um fluxo constante durante toda a inspiração), "ascendente" ou "sinusoidal". O número de ciclos respiratórios que os pacientes realizam em um minuto (freqüência respiratória - f) será conseqüência do tempo inspiratório (TI), que depende do fluxo, e do tempo expiratório (TE). O TE pode ser definido tanto pelo paciente (ventilação assistida), de acordo com suas necessidades metabólicas, como através de programação prévia do aparelho (ventilação controlada). O produto da f pelo VT é o volume minuto ( E). Dessa forma, fica claro o que acontece quando fazemos ajustes no aparelho. Por exemplo, se optarmos por ventilar um paciente em volume assistido/controlado, o que temos que definir para o ventilador é o VT e o e, de acordo com a resistência e a complacência do sistema respiratório do paciente, uma determinada pressão será atingida na via aérea. Se, por outro lado, trabalharmos com um ventilador que cicla em pressão, temos que calibrar o pico de pressão inspiratória (PPI) e o , sendo o VT uma conseqüência dessa forma de ventilação. Esse tipo de ventilação (ciclada à pressão) que, praticamente, não é mais aplicada está presente em ventiladores do tipo Bird Mark 7®.
Indicações
Os critérios para aplicação de VM variam de acordo com os objetivos que se quer alcançar. Em situações de urgência, especialmente quando o risco de vida não permite boa avaliação da função respiratória, a impressão clínica é o ponto mais importante na indicação de VM, auxiliada por alguns parâmetros de laboratório (Tabela 1).
As principais indicações para iniciar o suporte ventilatório são:
• Reanimação devido à parada cardiorrespiratória;
• Hipoventilação e apnéia: A elevação na PaCO2 (com acidose respiratória) indica que está ocorrendo hipoventilação alveolar, seja de forma aguda, como em pacientes com lesões no centro respiratório, intoxicação ou abuso de drogas e na embolia pulmonar, ou crônica nos pacientes portadores de doenças com limitação crônica ao fluxo aéreo em fase de agudização e na obesidade mórbida;
• Insuficiência respiratória devido a doença pulmonar intrínseca e hipoxemia. Diminuição da PaO2 resultado das alterações da ventilação/perfusão (até sua expressão mais grave, o shunt intrapulmonar). A concentração de hemoglobina (Hb), o débito cardíaco (DC), o conteúdo arterial de oxigênio (CaO2) e as variações do pH sangüíneo são alguns fatores que devem ser considerados quando se avalia o estado de oxigenação arterial e sua influência na oxigenação tecidual;
• Falência mecânica do aparelho respiratório:
- Fraqueza muscular / Doenças neuromusculares / Paralisia; e
- Comando respiratório instável (trauma craniano, acidente vascular cerebral, intoxicação exógena e abuso de drogas).
• Prevenção de complicações respiratórias:
– Restabelecimento no pós-operatório de cirurgia de abdome superior, torácica de grande porte, deformidade torácica, obesidade mórbida; e
– Parede torácica instável.
• Redução do trabalho muscular respiratório e fadiga muscular. Um aumento no volume minuto através da elevação da f, com conseqüente diminuição no VT, é o mecanismo de adaptação transitório que se não for revertido levará à fadiga muscular devido ao aumento da demanda metabólica, aumento da resistência e/ou diminuição da complacência do sistema respiratório, fatores obstrutivos intrabrônquicos, restrição pulmonar, alteração na parede torácica, elevação da pressão intraabdominal, dor, distúrbios neuromusculares e aumento do espaço morto.
Resumindo, a VM é aplicada em várias situações clínicas em que o paciente desenvolve insuficiência respiratória, sendo, dessa forma, incapaz de manter valores adequados de O2 e CO2 sangüíneos, determinando um gradiente (ou diferença) alvéolo-arterial de O2 [(PA-a)O2] e outros indicadores da eficiência das trocas gasosas (por exemplo: relação PaO2/FIO2) alterados. Hipoxemia com gradiente aumentado indica defeito nas trocas alvéolo-capilares (insuficiência respiratória hipoxêmica). Hipoxemia com gradiente normal é compatível com hipoxemia por hipoventilação alveolar (insuficiência respiratória ventilatória). Sob oxigenoterapia e/ou ventilação mecânica, a relação PaO2/FIO2 tem sido usada na quantificação da gravidade da lesão pulmonar, na comparação evolutiva e na predição das mudanças na PaO2 se a FIO2 for elevada. O valor normal em ar ambiente é acima de 300, valores abaixo indicam deterioração de trocas e menor do que 200 sugerem extrema gravidade do quadro respiratório. Na insuficiência respiratória, o suporte ventilatório consegue contrabalançar esses defeitos, permitindo uma melhor relação ventilação/perfusão capilar (resultando em melhor PaO2), aumenta a ventilação alveolar (melhor pH e PaCO2), aumenta o volume pulmonar prevenindo ou tratando as atelectasias, otimiza a capacidade residual pulmonar - CRF, reduz o trabalho muscular respiratório com diminuição do consumo de O2 sistêmico e miocárdico, diminui a pressão intracraniana e estabiliza a parede torácica.
Assim, o princípio do ventilador mecânico é gerar um fluxo de gás que produza determinada variação de volume com variação de pressão associada. As variações possíveis para esta liberação de fluxo são enormes e, com o progresso dos ventiladores microprocessados, as formas de visualizar e controlar o fluxo, o volume e a pressão estão em constante aprimoramento. Cada vez mais a equipe da UTI estará exposta a diferentes formas de apresentação e análise de parâmetros respiratórios fornecidas pelo ventilador, sofisticando as decisões clínicas. Nosso objetivo é apresentar e padronizar os conceitos e as modalidades ventilatórias que serão discutidas ao longo deste Consenso.
Atualmente, a maior parte dos ventiladores artificiais apresenta telas nas quais se podem visualizar as curvas de volume, fluxo e pressão ao longo do tempo, assim, serão apresentadas, neste capítulo, as definições das modalidades ventilatórias usando esquemas representativos das curvas.
O ciclo ventilatório
O ciclo ventilatório durante a ventilação mecânica com pressão positiva pode ser dividido em (Figura 1):
1) Fase inspiratória: Corresponde à fase do ciclo em que o ventilador realiza a insuflação pulmonar, conforme as propriedades elásticas e resistivas do sistema respiratório. Válvula inspiratória aberta;
2) Mudança de fase (ciclagem): Transição entre a fase inspiratória e a fase expiratória;
3) Fase expiratória: Momento seguinte ao fechamento da válvula inspiratória e abertura da válvula expiratória, permitindo que a pressão do sistema respiratório equilibre-se com a pressão expiratória final determinada no ventilador; e
4) Mudança da fase expiratória para a fase inspiratória (disparo): Fase em que termina a expiração e ocorre o disparo (abertura da válvula ins) do ventilador, iniciando nova fase inspiratória.
Análise gráfica durante a ventilação mecânica
Curvas de fluxo
O fluxo geralmente é medido diretamente pelo ventilador, através de sensores de pressão diferencial que estão posicionados entre a cânula endotraqueal e o "Y" do circuito do ventilador. O fluxo inicia-se, nos modos controlados, depois de determinado intervalo de tempo (depende da f ou da relação inspiração:expiração - TI/TE) ou através de um limite de sensibilidade (trigger ou disparo) pré-estabelecido. Duas técnicas são utilizadas na prática para o disparo de um ciclo ventilatório: a queda de pressão ou a geração de fluxo (na modalidade assistida e/ou espontânea). Após o início do ciclo (disparo) o fluxo aumenta até atingir um valor pré-fixado, chamado de pico de fluxo. Este valor é definido pelo operador no modo volume controlado e pode ser mantido constante ou ter valor decrescente no tempo. O fluxo, nessa modalidade, vai definir o tempo que a válvula inspiratória permanecerá aberta (TI), de acordo com o VT estabelecido. Por exemplo: Ventilação com volume controlado com VT de 500 mL e de 60 L/min (ou seja, 1 L/s); logo o TI será de 0,5 s – tempo que a válvula inspiratória permanecerá aberta para propiciar a entrada de I/2 L de ar. O fluxo inspiratório encerra-se conforme o modo de ciclagem estabelecido, ou seja, fecha-se a válvula ins e abre-se a válvula expiratória do aparelho, começando então o fluxo expiratório. As características da curva de fluxo nos modos espontâneos (pico e duração) são determinadas pela demanda do paciente. O começo e o final da inspiração são, normalmente, minimamente afetados pelo tempo de resposta do sistema de demanda (válvulas). Porém, em casos de alta demanda (por parte do paciente), o retardo na abertura da válvula inspiratória pode gerar dissincronia paciente-ventilador. Na Figura 2 abaixo, apresentamos o exemplo de uma onda de fluxo quadrada (fluxo constante) no modo volume controlado. Apresentamos ainda a característica da onda de fluxo na ventilação espontânea sem o uso de suporte ventilatório.
A forma da onda de fluxo pode ser modificada no ventilador diretamente ou indiretamente conforme o modo ventilatório escolhido. Abaixo, alguns exemplos de curva de fluxo (Figura 3).
As formas mais utilizadas na prática clínica são a quadrada, permite a realização da monitoração da mecânica respiratória, e a descendente, proporciona uma melhor distribuição do ar inspirado.
Curvas de pressão
A pressão é geralmente medida pelo ventilador diretamente, através de transdutor instalado próximo ao tubo endotraqueal ("Y" do circuito do ventilador).
Durante a ventilação espontânea, na inspiração, devido à contração da musculatura respiratória, ocorre uma queda da pressão nos alvéolos/vias aéreas para que seja gerado o fluxo inspiratório (Figura 2). Na ventilação assistida e em modos espontâneos como a Pressão de Suporte, a contração da musculatura vai depender da demanda metabólica do paciente (controle neural – drive), vai proporcionar a queda de pressão no circuito e, de acordo com a sensibilidade ajustada, promover a abertura da válvula (disparo) gerando um pico de fluxo inspiratório, aumentando progressivamente a pressão no sistema respiratório do paciente. Na expiração, ao contrário, como a pressão no sistema está elevada, a abertura da válvula expiratória promoverá a saída passiva do VT.
No gráfico abaixo, Figura 4, o traçado de pressão nas vias aéreas começa e termina no nível zero. Entretanto, é possível utilizar uma pressão positiva ao final da expiração (PEEP, do inglês positive end expiratory pressure), quando, então, o traçado partirá e terminará em um nível de pressão acima de zero. Note que na ventilação espontânea a pressão intratorácica é negativa na ins e positiva na expiração, enquanto que durante a ventilação mecânica, a pressão nas vias aéreas se mantém positiva durante todo o ciclo (desde que se use uma PEEP). Esse fato gera repercussões hemodinâmicas que devem ser do conhecimento do profissional responsável pelo suporte ventilatório do paciente.
Componentes da pressão inspiratória: Como observado no gráfico da Figura 4, à medida que o fluxo de ar adentra o sistema respiratório, a pressão inspiratória vai se elevando, pois é necessária para vencer dois componentes: um resistivo (devido à resistência ao fluxo de ar passando pelas vias aéreas) e outro elástico (decorrente da distensão dos pulmões e da parede torácica). Estes dois componentes são demonstrados abaixo, quando um determinado volume é fornecido com fluxo constante até determinado ponto (1), quando ocorre uma interrupção do fluxo (pausa inspiratória) que determina a pressão de platô (2), Figura 5
O ponto (1) representa o pico de pressão (PPI) nas vias aéreas, que sofre interferência tanto do fluxo (Pres = pressão resistiva) como da variação de volume (Pel = pressão elástica). Já o ponto (2) marca a pressão de platô (PPLATÔ) das vias aéreas, que representa a pressão de equilíbrio do sistema respiratório, na ausência de fluxo (não existe fluxo, portanto não há o componente de resistência das vias aéreas).
Na situação de fluxo zero (pausa inspiratória), observa-se que a Pel corresponde à pressão no sistema que equilibrou aquele volume de ar que entrou (VT), portanto sua relação é a complacência do sistema respiratório. Pois, na situação de fluxo zero, a pressão resistiva é zero e a pressão observada no sistema (pressão de platô), corresponde à pressão elástica do sistema respiratório (diferença entre a PPLATÔ e a PEEP).
Disparo do ventilador
Durante a ventilação mecânica, uma variável de disparo pré-determinada deve ser alcançada para iniciar a inspiração. Com a ventilação controlada, a variável é o tempo e é independente do esforço do paciente. Nos modos que permitem ciclos assistidos e espontâneos, a inspiração começa quando se alcança um nível de pressão ou fluxo pré-determinado (sensibilidade).
No disparo à pressão, o ventilador detecta uma queda na pressão de vias aéreas ocasionada pelo esforço do paciente. Este esforço pode iniciar a inspiração se a pressão negativa realizada ultrapassar o limiar de pressão para o disparo (sensibilidade ou trigger) ou pode não disparar o ciclo, caso a pressão negativa não ultrapasse este limiar, gerando apenas trabalho respiratório e dissincronia (Figura 6). O limiar de pressão é determinado pelo operador no ventilador, que indicará sempre a pressão negativa abaixo da PEEP necessária para disparar o ventilador. O disparo a fluxo envolve o uso de um fluxo inspiratório basal contínuo (bias flow ou continuous flow). Quando a diferença entre o fluxo inspiratório e o fluxo expiratório alcançar um determinado limite de sensibilidade, abre-se a válvula ins e um novo ciclo ventilatório começa.
Sensibilidade e tempo de resposta do ventilador: Quando o disparo é determinado pelo paciente existe um intervalo entre o início da deflexão negativa da pressão e o início do fluxo inspiratório. A este intervalo chamamos de "tempo de resposta do ventilador". Este tempo depende da sensibilidade da válvula inspiratória do ventilador e da capacidade do ventilador em gerar o fluxo (Figura 7). Quando o tempo de resposta do ventilador é elevado, o paciente fará um esforço acima do necessário até que o fluxo se inicie, aumentando o trabalho respiratório e gerando dissincronia paciente-ventilador. Em geral admite-se como responsividade aceitável aquela abaixo de 150 milissegundos.
Curvas de volume
O gráfico de volume representa, em sua porção ascendente, o volume pulmonar inspirado e, em sua curva descendente, o volume pulmonar total expirado. Os volumes são iguais a menos que esteja ocorrendo vazamento, desconexão do circuito ou aprisionamento aéreo (Figura 8).
Curvas de fluxo, pressão e volume em função do tempo
Individualmente, as curvas de fluxo, pressão e volume são importantes, porém podemos utilizar e completar melhor as curvas quando estão associadas. Abaixo, na Figura 9, são mostradas as três formas de curvas em associação, durante a ventilação controlada, assistida e espontânea.
domingo, 20 de maio de 2012
terça-feira, 15 de maio de 2012
Sociedade Brasileira de Terapia Intensiva - Manaus: DESMAME DA VENTILAÇÃO MECÂNICA
Vale a pena ler:
Sociedade Brasileira de Terapia Intensiva - Manaus: DESMAME DA VENTILAÇÃO MECÂNICA: DESMAME DA VENTILAÇÃO MECÂNICA Introdução Desmame é o processo transitório entre o suporte da ventilação mecânica artific...
Parabéns Colegas de Manaus.
segunda-feira, 14 de maio de 2012
quinta-feira, 10 de maio de 2012
sexta-feira, 4 de maio de 2012
SOBRATI - PRINCÍPIOS
1. Reunir todos profissionais ou acadêmicos que objetivam praticar ou buscar conhecimento da Emergência e Terapia Intensiva;
2. Contribuir com as sociedades de classe que promovam ou estimulem a boa prática do atendimento-UTI e Emergência;
3. Divulgar a nacionalmente a finalidade dos socorristas, emergencistas eintensivistas, sua formação e qualificação;
4. Colaborar na transformação do atendimento nas Unidades Emergenciais e Intensivas brasileiras, sobretudo na humanização caracterizada na autodeterminação e respeito ao paciente;
5. Proporcionar ampliação e intercâmbio dos profissionais das diferentes áreas que atuem no paciente crítico;
6. Reforçar a missão ética da saúde;
7. Auxiliar na formação da cidadania do nosso país;
8. Inserir o jovem acadêmico no universo associativo;
9. Fortalecer e promover o ensino do emergencismo e intensivismo;
10. Aglutinar trabalhos técnicos de diferentes áreas;
11. Apoiar iniciativas nacionais de empresas e profissionais que trabalham em novas tecnologias para desenvolvimento e pesquisa brasileiras;
12. Enfatizar o orgulho da nação como entidade cultural;
13. Fortalecer a relação profissional-paciente na UTI, no sentido amplo e espiritual, onde se vivencia o frágil elo entre vida e morte no atendimento emergencial e intensivo.
quinta-feira, 3 de maio de 2012
CONGRESSO HOSPITALAR DE EMERGÊNCIA E TERAPIA INTENSIVA - SOBRATI
É com grande honra e satisfação que a Feira Hospitalar 2012, a SOBRATI e a ERWS vem convidar a comunidade emergencista e intensivista para o IV Congresso Hospitalar de Emergência e Terapia Intensiva. A cada ano que passa, sentimos a força e o interesse dos profissionais pela emergência e a UTI. A Hospitalar inaugurou um modelo há 18 anos que proporcionou a divulgação da indústria nacional, além de incentivar a pesquisa e a transmissão de conhecimento a comunidade de saúde brasileira. O Congresso Hospitalar de Emergência e UTI já faz parte das atividades oficiais da Semana Internacional da Saúde. São coordenadores, professores, plantonistas, estudantes, técnicos e representantes que discutem o que há de melhor e mais atual para a emergência. Todo ano, a partir de 2010, a SOBRATI estará lançado as NOVAS DIRETRIZES , fazendo um balanço e protocolando decisões e pareceres. O Congresso inovou onde a participação do público é intensa, havendo debates, abrindo opiniões, ou seja, dentro de um processo PARTICIPATIVO, o congressista poderá imprimir sua marca nas decisões nacionais sobre UTI e Emergência. Também estaremos recebendo a I Convenção Internacional da ERWS, nomeando comandos internacionais, ampliando parcerias com países irmãos. A Hospitalar é um grande laboratório a céu aberto, participam 1200 empresas dos vários continentes. Aguardamos por você em São Paulo, a Capital Mundial da Emergência ! Sejam Todos (as) Bem Vindos (as).
Douglas Ferrari - Presidente do Congresso Hospitalar de Emergência e UTI
INSCRIÇÕES ABERTAS!
|
Novas Tecnologias - Ambulâncias de Resgate - Desfibriladores - Monitores - Respiradores - Atualização de Protocolos - Intensivistas e Emergencistas de todo país.
Quarta-feira | 23 de Maio de 2012 |
( 11:00 - 12:00 ) | Recepção |
( 12:00 - 12:30 ) | Abertura Oficial - Pós Graduandos da SOBRATI |
( 12:30 - 13:00 ) | Condecorações |
( 13:00 - 13:45 ) | Trauma: Lesão facial ( Indução Hipotermia / BIS ) - Odontologia Intensiva |
( 13:45 - 14:30 ) | Infecção hospitalar / sepse - KPC / ECOQUEST ( Radiação Iônica ) - Enfermagem Intensiva |
( 14:30 - 15:15 ) | Crack - Emergência e Epidemia - Medicina Intensiva (US Portátil GE ) |
(15:15 - 16: 45 ) | Neuro-Estimulação / Síndrome Imobilismo ( Colchão e Meia Pneumática ) - Fisioterapia Intensiva |
( 16:45 - 17:00) | Intervalo |
( 17:00 - 17:15 ) | Abertura Convidados Acadêmicos e Profissionais |
( 17:15 - 18:15 ) | Palestra Internacional ONU - Humanização na UTI ( The Never End Journey ) / Cães Terapêuticos - Psicologia Intensiva |
( 18:15 - 19:00 ) | PCR - Novas Diretrizes ( Auto-Pulse/LUCAS II - CMOS ) |
( 19:00 - 19:45) | Princípios da IRPA e Ventilação mecânica ( Bennett - Laringoscopia Digital ) |
(19:45 - 20:30) | SAMU - Atendimento Primário ( Coma/Choque/IRpA) - Emergencista |
(20:30 - 21:00) | Fonoaudiologia Intensiva / Nutrição Intensiva( Reabilitação pós-intubação e SNE ) |
( 21:00 - 21:30) | Encerramento |
AGUARDAMOS TODOS !
SAUDAÇÕES INTENSIVISTAS.
Assinar:
Postagens (Atom)